Originate from Space Technology - Foster National Economy - Pursue Extreme Cryogenics - Support Cutting-edge Sci. & Tech
Tel: +86-021-69178388
Search
Cancel
Reading Information
Company News
Materials for download
Granted patents
Academic articles co-authored by the company
Patents granted in the early stage
Academic articles published in the early stage
14). Theoretical and experimental investigations on the partial scaling method for the Oxford-type moving-coil linear compressor. Cryogenics, Vol.69, pp.26–35, 2015, https://doi.org/10.1016/j.cryogenics.2015.03.004.
Back
[Abstract]
This paper puts forward the partial scaling method of the Oxford-type moving-coil linear compressor for pulse tube cryocoolers and analyzes the related principles. The systematic experimental investigations  are further made to verify the analyses. One of the typical compressors developed in the authors' laboratory is chosen to be scaled, and then coupled with the original pulse tube cold finger. At the typical operating temperature of 80 K for the pulse tube cold finger, the scaled compressor's maximum input electric power increases from 236.7 W to 370.0 W, and the cooling power is enhanced from 10.0 W to 15.0 W. The motor efficiency decreases from 78% to 73%, but the average cooling efficiency slightly increases from 11% to 12% of Carnot efficiency due to a better match between scaled compressor and original cold finger. The rationality and feasibility of the partial scaling method have been verified by the theoretical analyses and experimental investigations.

Download Paper: PDF Document
Back
Contact
No. 1155, Liuxiang Road, Jiading District, Shanghai
+86-021-69178388
(Recruitment)hr@boreas-cryogenics.com
(Sales)sales@boreas-cryogenics.com
(Inquiry)inquiry@boreas-cryogenics.com
 
 
Search
Search
We are still introducing new products
Boreas Cryogenics © 2021-2025